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ABSTRACT

We propose a method for recursive segmentation of the left ventricle
(LV) across a temporal sequence of magnetic resonance (MR) im-
ages. The approach involves a technique for learning the LV bound-
ary dynamics together with a particle-based inference algorithm on
a loopy graphical model capturing the temporal periodicity of the
heart. The dynamic system state is a low-dimensional representa-
tion of the boundary, and boundary estimation involves incorporat-
ing curve evolution into state estimation. By formulating the prob-
lem as one of state estimation, the segmentation at each particular
time is based not only on the data observed at that instant, but also
on predictions based on past and future boundary estimates. We as-
sess and demonstrate the effectiveness of the proposed framework
on a large data set of breath-hold cardiac MR image sequences.

Index Terms— Magnetic resonance imaging, cardiac imaging,
left ventricle, image segmentation, recursive estimation, curve evo-
lution, graphical models, particle filtering, learning.

1. INTRODUCTION

Segmentation of the left ventricle (LV) of the heart across a cardiac
cycle is a problem of interest because the left ventricle’s proper func-
tion, pumping oxygenated blood to the entire body, is vital for nor-
mal human activity. Having segmentations of the LV over time al-
lows cardiologists to assess the dynamic behavior of the human heart
(using, e.g., the ejection fraction). Observing how the LV evolves
throughout an entire cardiac cycle allows physicians to determine
the health of the myocardial muscles. Segmented LV boundaries
can also be useful for further quantitative analysis. For example,
past work [1, 2] on extracting the flow fields of the myocardial wall
assumes the availability of LV segmentations throughout the cardiac
cycle.

The automated segmentation of the LV endocardium in bright
blood cardiac magnetic resonance (MR) images is a challenging
problem. Exploiting segmentations from a previous or future frame
can improve the segmentation of the LV in the current frame, be-
cause the LV boundaries exhibit strong temporal correlation. Using
such information would be particularly useful for low SNR images,
in which the observation from a single frame alone may not provide
sufficient information for an acceptable segmentation. The incorpo-
ration of dynamic models into cardiac segmentation and tracking is
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an area of recent and growing interest. Chalana, et al. [3] and Jolly
et al. [4] perform causal processing using the segmentation from
the most recent frame to initiate a local search for the segmentation
in the current frame. Senegas, et al. [5] use sample-based meth-
ods (using sequential Monte Carlo) for causal shape tracking on a
finite-dimensional representation of the shape space using spherical
harmonics.

We propose a segmentation approach in which we use level
set representations in concert with finite-dimensional projections
of curves onto principal components. We use nonparametric,
information-theoretic methods to learn statistical models for tem-
poral evolution of these finite-dimensional projections. We use
sample-based methods [11] for fusing our dynamic model with the
MR image sequence data. We exploit the periodicity of cardiac mo-
tion, and perform inference on a graph consisting of a single cycle.
While the core of our approach involves sampling and inference on
finite-dimensional projections of the shape space, by coupling level
set representations into our graphical structure appropriately, our
ultimate boundary estimates are in fact curves generated via curve
evolution, and hence are not constrained to a finite-dimensional
space.

In summary, the major contributions of our approach are (a) the
use of nonparametric, information-theoretic methods to learn the dy-
namics of the LV evolution; (b) the development of a particle-based
inference algorithm that allows segmentation throughout the LV cy-
cle using all available data; (c) the incorporation of level set methods
in a statistically consistent manner in order to generate boundaries
not constrained to reside in the finite-dimensional domain in which
dynamics have been learned; and (d) the demonstration of the effec-
tiveness of our approach (both qualitatively and quantitatively) on
cardiac MR imagery.

2. PROBABILISTIC MODEL STRUCTURE

We formulate the dynamic segmentation problem as the estimation
of the posterior distribution of the left ventricular boundary at each
discrete time t ∈ {1, ..., T}, where T denotes the number of tempo-
ral MR image frames over a single cardiac cycle. Figure 1 is a graph-
ical model representation of the statistical structure we propose for
describing data and cardiac dynamics. Here, circular and rectangular
nodes correspond to hidden and observed random variables, respec-
tively. At each time point t, we observe the image data yt, which are
noisy measurements of the blood and tissue intensity field. Let ft be
a coarse description of the intensities inside and outside the LV (in
particular, while other, more complex descriptions can be used, we
take ft to be the 2D vector consisting of the mean intensity inside the

LV and the mean intensity outside). Let �Ct denote the LV boundary
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Fig. 1. Graphical model representing the statistical model structure
used in our work.

at time t. One key aspect of this model is that we also define a vari-

able Xt, which is a low-dimensional representation of �Ct, and which
we use as the dynamic system state. A definition of Xt will follow
in Section 3. The structure in Figure 1 implies a Markov structure
for the dynamical model of Xt. The dashed line connecting X1 and
XT indicates a graphical link to exploit the periodicity of the cardiac
cycle, capturing the fact that although X1 and XT are not temporal
neighbors in absolute time, they are neighbors in the cardiac cycle.

This model involves a likelihood model p(yt|ft, �Ct), an intensity
prior model p(ft| �Ct), a curve prior model p(�Ct|Xt), and a dynam-
ical model for the system state p(Xt|Xt−1). Note that each of these
models can be associated with a single edge or multiple edges in Fig-
ure 1, and also that due to the Markov structure, these are the only re-
lationships required to characterize the joint distribution of the vari-

ables involved. We specify a simple curve prior model p(�Ct|Xt)

that penalizes the deviation of �Ct from the curve represented by Xt.

For the intensity prior model p(ft| �Ct), based on empirical observa-
tions, we use a log-normal density, in which the model parameters
are learned from intensities of segmented training data. Similarly,

for the likelihood model p(yt|ft, �Ct), we use a log-normal density
whose mean involves the mean intensity variable ft. For the exact
form of these models, see [6].

The major component needed to complete our statistical model
is the Markovian dynamics p(Xt|Xt−1) (or p(Xt−1|Xt) in the
backward direction) between two temporally-neighboring states
Xt−1 and Xt in the evolution of the LV1. This can be associated
with the edges between the X’s in Figure 1. The perspective we
take in this paper is to learn a time-varying dynamical model from
off-line training data (Section 3), and then use that model in the
automatic segmentation process (Section 4).

3. SYSTEM DYNAMICS

In this section, we describe our finite dimensional representation of
LV boundaries, and propose an information-theoretic technique for
learning the boundary dynamics.

Using a finite-dimensional approximate representation Xt of

the boundaries �Ct makes the learning problem better posed and the
learned models statistically significant. We use principal compo-
nent analysis (PCA) on the signed distance functions (SDFs) of the
(area-normalized) boundaries to obtain a finite-dimensional basis
(keeping 8 principal components) for the shapes [7, 8]. We append
this basis with area to obtain a 9-dimensional basis. Given this basis,

1In addition, we have similar models relating X1 and XT .

we can represent the SDF of any given shape by a linear combina-
tion of the basis elements. Thus the 9-dimensional system state Xt

is composed of the coefficients for that representation, and we are
interested in learning its dynamics.

Unlike existing work (e.g., [9]), we learn the dynamics using
information-theoretic ideas and nonparametric statistics, without re-
strictions of linearity or Gaussianity. Our approach is based on the
technique in [10], which provides a nonparametric, yet computa-
tionally tractable approach to learning the dynamics. Our approach
involves two steps. First we learn maximally informative statistics
about the past (or future) for the prediction of the current state. The
second step involves non-parametrically estimating the (forward and
backward) transition densities.

We are interested in learning the statistical relationship between
Xt−1 and Xt. Ideally, we would like to consider only the por-
tion of the state Xt−1 that is statistically pertinent to the predic-
tion of Xt. To this end, we introduce a function qt−1(Xt−1) which
seeks to reduce dimensionality yet capture all of the information
in Xt−1 that relates to Xt

2. This is achieved exactly only when
I(Xt; Xt−1) = I(Xt; qt−1(Xt−1)), where I(Xt; Xt−1) is the mu-
tual information between Xt and Xt−1. In practice, even if we can-
not generally make I(Xt; qt−1(Xt−1)) equal to I(Xt; Xt−1), we
can try to make it as large as possible. As a result, we pose the
problem as finding qt−1 that maximizes I(Xt; qt−1(Xt−1)). This
makes qt−1(Xt−1) a maximally-informative statistic. In the exper-
iments presented in this paper, we constrain qt(∀t) to be a linear
function. It should be noted that the linearity assumption for qt does
not mean that the resulting dynamic model is either linear or Gaus-
sian [10]. We then obtain the forward densities (backward densities
can be learned in a completely analogous manner) based on training
data. We note that the procedure we describe in this section pro-
duces densities of the form p(Xt|qt−1(Xt−1)) which we use as ap-
proximate representations of the state dynamics p(Xt|Xt−1). Given
samples of Xt and Xt−1, we construct a kernel density estimate of
the joint density pXt,qt−1(Xt−1)(Xt, qt−1(Xt−1)), from which we
can obtain the desired forward transition density by conditioning:
pXt|qt−1(Xt−1)(Xt|qt−1(Xt−1)). Using this framework, one can
in principle learn a fully time-varying model. However, in practice,
this requires the availability of sufficient training data to support such
learning. When the number of training samples is moderate, one
could impose a time-invariant model for the systolic phase, and one
for the diastolic phase (and hence use all data in that phase, rather
than only at a particular time, for learning), as we do in our experi-
ments in Section 5.

4. INFERENCE ALGORITHM

In this section we describe our approach to dynamic segmentation
based on the probabilistic model introduced in Section 2, and the dy-
namic model for X learned using the method discussed in Section 3.
Thanks both to the nonparametric form of the forward and backward
transition densities for X and, more generally, the complex nature of
the Bayesian inference problems we wish to solve, we are led to the
use of sampling - i.e., particle-based algorithms [11] to approximate
the densities and likelihood functions required in the inference pro-
cedure. However, there are two issues that preclude straightforward
use of standard particle filtering methods in our problem. The first is
that rather than causal filtering on a chain, we are interested in per-
forming inference on the cycle graph of Figure 1. The second is that
a full particle representation of the inference problem of LV segmen-

2Note that we can define a function in the ”backward” direction in a com-
pletely analogous fashion.
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tation would involve generating particles for the infinite-dimensional

curves, �C. We avoid this complexity through an approximation that
involves solving level-set based curve evolutions during the sam-
pling procedure.

Our goal is to estimate Xt for any t based on y1:T = {yτ |1 ≤
τ ≤ T}. The posterior density p(Xt|y1:T ) is proportional to:

∫
ft

∫
�Ct

p(yt|ft, �Ct)p(ft| �Ct)p(�Ct|Xt)p(Xt|y(1:T )\t)d�Ctdft, (1)

where y(1:T )\t denotes all data in y1:T except yt. One complexity
that would be encountered by a particle-based algorithm here is the

marginalization operation over ft and �Ct. We consider the following
approximate representation of (1):

p(Xt|y1:T ) ∝ p(yt|f∗
t , �C∗

t )p(f∗
t | �C∗

t )p(�C∗
t |Xt)p(Xt|y(1:T )\t).

(2)
We will describe how to compute the new variables f∗

t and �C∗
t , but

for the time being, assume we have them. We are then left with
the computation of (2) at each point in time. This computation can
be performed by a message-passing algorithm called belief propa-
gation (BP) [12]. This algorithm requires the specification of the
probabilistic model in terms of potential functions corresponding to
each node/time in our graph and to each edge. In our case, the node
potentials capture all of the statistical information localized to time
t alone, i.e.:

ψt(Xt, yt) = p(yt|f∗
t , �C∗

t )p(f∗
t | �C∗

t )p( �C∗
t |Xt)p(Xt). (3)

The edge potentials are given by

ψt,τ (Xt, Xτ ) =
p(Xt, Xτ )

p(Xt)p(Xτ )
=

p(Xt|Xτ )

p(Xt)
=

p(Xτ |Xt)

p(Xτ )
, (4)

where the involvement of the system dynamics can be observed.
Given these potentials, BP involves an iterative procedure in which
every node sends a “message” to its neighbors in each iteration. BP
provides an exact solution for tree-structured graphs, and an approx-
imate solution for loopy graphs. The message from node τ to node t
at iteration n is given by:

mn
τt(Xt) ∝

∫
Xτ

ψt,τ (Xt, Xτ )ψτ (Xτ , yτ )
∏

s∈N(τ)\t

mn−1
sτ (Xτ )dXτ ,

(5)
where N(τ) \ t denotes all neighbors of node Xτ except Xt. The
posterior can be computed as:

pn(Xt|y1:T ) ∝ ψt(Xt, yt)
∏

τ∈N(t)

mn
τt(Xt). (6)

Such message computations can be performed exactly only in spe-
cial cases; e.g., when everything is Gaussian. In the more general
case involving nonparametric densities, one can perform approxi-
mate computations using particle-based methods. In our work, we
use the nonparametric belief propagation (NBP) algorithm [13]. In
NBP, particle representations serve as weighted mixture distribution
approximations (in particular Gaussians sums) of the true messages.

Now, let us turn to an issue we have previously put aside, namely

the approximation in (2) involving the variables f∗
t and �C∗

t . To com-
pute these quantities in each message passing iteration n (with the
resulting values then used to update the node potentials in (3)), we
carry out the following optimization:

(f∗
t [n], �C∗

t [n]) = arg min
ft, �Ct

En(ft, �Ct) (7)

where En(ft, �Ct) is given by:

−log p(yt|ft, �Ct)−log p(ft| �Ct)−log

∫
Xt

p( �Ct|Xt)
∏

τ∈N(t)

mn
τt(Xt)dXt

(8)
Note that this is an approximate way of replacing the marginaliza-

tion operation in (1) by the maximization of the integrand [6]. We
solve this variational problem by curve evolution based on level sets.

Once the values of f∗
t [n] and �C∗

t [n] are found to minimize this func-
tional we update the node potential ψn

t (Xt, yt) (note that here we
indicate the dependence of the potential on the iteration n explicitly)
using (3). Then the NBP belief update procedure [13] can be used
to generate samples from the posterior density pn(Xt|y1:T ) in (6).

When the NBP iterations converge, we can use the final �C∗
t as the

segmented LV boundary at time t.

5. EXPERIMENTAL RESULTS

We apply the proposed technique on 2-D mid-ventricular slices of
MR data, but we also note that we can in principle apply the method
to 3-D data. The data set we use contains twenty-frame time se-
quences of breath-hold cardiac MR images, each representing a sin-
gle cardiac cycle with the initial frame gated (synchronized) with
an electrocardiogram (EKG) signal. We do not consider arrhyth-
mias because only patients having sustained and hemodynamically-
stable arrhythmias, a rare situation, can be practically imaged and
analyzed. Anonymized data sets were obtained from the Cardiovas-
cular MR-CT Program at the Massachusetts General Hospital. Our
training set consists of 42 cardiac cycles of 20 frames each for a to-
tal of 840 images, acquired from five patients. The segmentations
on the training set were carried out manually by both radiologists
as well as researchers whose results were reviewed by radiologists.
All of the training and test sets come from healthy patients. Our
test set consists of 234 cardiac cycles of 20 frames each, acquired
from 26 patients. These patients are different from the ones used
for the training set. We measure accuracy of the segmentations by
computing the dice coefficient [14], which evaluates to 1 when the
segmentation result and the underlying true region perfectly match,
and 0 when the regions do not overlap at all. To determine the ac-
curacy of a set of boundary estimates, we compute the dice measure

between each of the estimates �C∗
t and the ground truth at that time,

and then average over all of the dice coefficients computed.

Figure 2 shows our segmentation results on representative
frames of high-SNR data, superimposed on the manual segmen-
tations representing the ground truth. The results appear to be quite
accurate. In Figure 3, we present some results on low-SNR data.
Here, we also display the results of the static, shape prior-based
segmentation algorithm of Tsai et al. [8] for comparison. The static
segmentation method of [8] uses the same training data as our ap-
proach for learning the shape priors. We qualitatively observe that
our approach leads to more accurate segmentations. This observa-
tion is supported quantitatively by the dice boundary coefficients
presented in Table 1. The static segmentation method achieves
0.8516 and 0.8035, for the high and low SNR cases respectively,
while the corresponding numbers for our algorithm are 0.9292 and
0.9069. This quantitative empirical analysis demonstrates the ef-
fectiveness of our strategy in incorporating information from other
temporal frames into the segmentation process.
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Fig. 2. LV segmentations (yellow) on a high-SNR cardiac MR image
sequence. Ground truth shown in green.

Fig. 3. Comparison of the LV boundary estimates of our approach
(yellow) with static segmentations using a shape prior (dark red)
based on [8] on low-SNR data. Ground truth is shown in green.

6. CONCLUSION

We have presented an approach for segmentation of the evolving left
ventricle. We have proposed a nonparametric, information-theoretic
method to learn the time-varying LV dynamics from training data.
Using a Bayesian framework, based on a single-cycle graph to cap-
ture periodicity of cardiac motion, we have developed a particle-
based inference algorithm that allows time-recursive segmentation
throughout the LV cycle using all available data. We have used
finite-dimensional approximate representations of the LV boundary
as state variables, rather than the infinite dimensional LV boundaries
themselves, in order to improve the reliability and accuracy of the
learning process. However, we have also incorporated curve evolu-
tion methods into this framework in order to generate boundaries not
constrained to reside in the finite-dimensional domain in which dy-
namics have been learned and exploited. We have demonstrated the
effectiveness of our approach (both qualitatively and quantitatively)
on cardiac MR imagery. These results exhibit the improvements pro-
vided by our approach over static segmentation methods.

Static Shape Prior Proposed Approach

High SNR 0.8516 0.9292
Low SNR 0.8035 0.9069

Table 1. Dice coefficients based on test data consisting of 234 car-
diac cycles of 20 frames each.

7. ACKNOWLEDGMENTS

The authors would like to thank Vivek Reddy and Godtfred Holm-
vang of the MR-CT Program at the Massachusetts General Hospital
for providing the MR data.

8. REFERENCES

[1] J. Duncan, A. Smeulders, F. Lee, and B. Zaret, “Measurement
of end diastolic shape deformity using bending energy,” in
Computers in Cardiology, 1988, pp. 277–280.

[2] J. C. McEachen II and J. S. Duncan, “Shape-based tracking of
left ventricular wall motion,” IEEE Trans. Medical Imaging,
vol. 16, no. 3, pp. 270–283, 1997.

[3] V. Chalana, D. T. Linker, D. R. Haynor, and Y. Kim, “A mul-
tiple active contour model for cardiac boundary detection on
echocardiographic sequences,” IEEE Trans. Medical Imaging,
vol. 15, no. 3, pp. 290–298, 1996.

[4] M-P. Jolly, N. Duta, and G. Funka-Lee, “Segmentation of the
left ventricle in cardiac MR images,” in IEEE Int. Conf. on
Computer Vision, 2001, vol. 1, pp. 501–508.

[5] J. Senegas, T. Netsch, C. A. Cocosco, G. Lund, and A. Stork,
“Segmentation of medical images with a shape and motion
model: A Bayesian perspective,” in Computer Vision Ap-
proaches to Medical Image Analysis (CVAMIA) and Math-
ematical Methods in Biomedical Image Analysis (MMBIA)
Workshop, 2004, pp. 157–168.

[6] W. Sun, Learning the Dynamics of Deformable Objects and
Recursive Boundary Estimation Using Curve Evolution Tech-
niques, Ph.D. thesis, MIT, August 2005.

[7] M. Leventon, Statistical Models in Medical Image Analysis,
Ph.D. thesis, MIT, May 2000.

[8] A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan,
W. E. Grimson, and A. Willsky, “A shape-based approach to
the segmentation of medical imagery using level sets,” IEEE
Trans. Medical Imaging, vol. 22, no. 2, 2003.

[9] D. Cremers, “Dynamical statistical shape priors for level set-
based tracking,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 28, no. 8, pp. 1262–1273, Aug. 2006.

[10] A. Ihler, “Maximally informative subspaces: Nonparametric
estimation for dynamical systems,” M.S. thesis, MIT, August
2000.

[11] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for on-line non-linear/non-Gaussian
Bayesian tracking,” IEEE Trans. Signal Processing, vol. 50,
no. 2, pp. 174–188, 2002.

[12] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Mor-
gan Kaufman, San Mateo, CA, 1988.

[13] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Will-
sky, “Nonparametric belief propagation,” in IEEE Conf. on
Computer Vision and Pattern Recognition. IEEE, 2003.

[14] L. Dice, “Measures of the amount of ecologic association be-
tween species,” Ecology, vol. 26, pp. 297–302, 1945.

232


